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Objectives

This research program focused on the development of energy-based models and model-based control
designs for high performance smart material transducers comprised of piezoceramic, magnetostrictive
and shape memory compounds. The first component of the program addressed the development
of dynamic models which quantify the constitutive nonlinearities, hysteresis, frequency effects and
thermal dependency of the materials. The second component focused on the development of linear
and nonlinear control designs which utilize full and partial inverse compensators derived from the
constitutive models. One objective was to employ these model-based control designs to construct
smart actuators which have the full stroke and force capabilities of the nonlinear constituent smart
materials but exhibit linear behavior throughout their drive range. A second objective was to achieve
stringent control objectives, including micron-level tracking and broadband response capabilities,
while operating in highly nonlinear and hysteretic regimes.

Status of Effort

During the program, we pursued parallel and synergistic investigations focused on the development
of energy-based models for high performance smart material transducers and model-based control
designs for these transducers to provide a robust control framework for actuators operating in highly
nonlinear and hysteretic regimes. Through the development of a multiscale modeling approach com-
prised of energy relations at the lattice level and stochastic homogenization techniques to provide
macroscopic constitutive relations, we have developed a unified framework for quantifying the hys-
teresis inherent to piezoceramic, magnetostrictive and shape memory compounds. These unified
models are subsequently employed to construct approximate inverse relations which are incorpo-
rated in robust control designs for actuators employing these compounds. It has been illustrated
through both numerical and experimental examples that the resulting control formulations facilitate
high speed transduction while maintaining micron-level tracking tolerances. in the presence of sensor
noise and disturbances accrued when approximating the nonlinear inverse maps.

Accomplishments

High performance transducers utilizing piezoelectric (PZT), magnetostrictive and shape memory
alloy (SMA) components provide unprecedented control capabilities in a number of aerospace and
aeronautic applications. Piezoelectric compounds are lightweight, provide both sensor and actuator
capabilities, and operate effectively over a broad frequency range. Due to these attributes, they
are presently being considered for shape morphing, vibration isolation, synthetic jet design and flow
control. Magnetostrictive materials and films provide large force capabilities which are under present
investigation for broadband blade morphing. Shape memory alloys achieve the highest output work
density ratings of the considered materials and are being considered for chevron design to decrease
jet engine noise while increasing aerodynamic efficiency. They also exhibit great potential for low
frequency, high strain and force shape modification for vibration isolation and flow control. However,
all of these materials also exhibit significant hysteresis and constitutive nonlinearities, as illustrated
in Figure 1, which must be incorporated in models and accommodated in control designs to achieve
the unique design capabilities which they provide for Air Force applications.

Development of a Unified Modeling Framework |

At the beginning of the program, five fundamental model criteria were identified as necessary
to achieve the flexibility and accuracy required for control design in high performance aerospace,
aeronautic and industrial applications utilizing piezoceramic, magnetostrictive or shape memory
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Figure 1: (a) Model comparison to quasistatic PZT5A data from [39], (b) model fit to Terfenol-D
data from [37], and (c) model fit to thin film SMA data from [15].
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actuators: (i) utilize the ferroic nature of the materials to construct unified modeling techniques,
(ii) enforce closure in the dynamic minor loop models, (iii) include frequency and relaxation de-
pendencies, (iv) include temperature dependencies, and (v) be amenable to efficient inversion for
linear control design. During the program, we have developed a unified modeling framework which
accomplishes all five of these criteria.

In the first step of the model development, we construct unified Helmholtz and Gibbs energy
relations ¥ and G using both statistical mechanics and phenomenological principals. For reglmes in
which thermal relaxation mechanisms are negligible, the local polarization P, magnetization M or
strain € behavior of homogeneous materials is quantified by the necessary condition

€= ?_Cf. ' 1)
Op
Here e = P,M or € and ¢ = E, H or o denotes the conjugate electric field, magnetic field, or stress.
To quantify thermally-induced creep, relaxation or reptation effects, the Gibbs energy and relative
thermal energy kT'/V are balanced through the Boltzmann relation

/.L(G) —- Ce—GV/kT ’ | (2)

where p denotes the probability of achieving an energy level G, k is Boltzmann’s constant, T' denotes
the temperature, and V is a reference volume. -
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Figure 2: Model predictions for electrostrictive PMN-PT-BT data at T=263 K and T=313 K.

To incorporate the effects of polycrystallinity, material nonhomogeneities, and variable effective
fields, stochastic homogenization techniques are used to construct the general macroscopic models

e@l®) = [ [ elpe+ wipalOnoraodpndse o ©

where € is the kernel defined in (1) and v, and 1, are densities that are estimated through least
squares fits to gdata for a given material or transducer.

As detailed in [29, 36, 39] for PZT, [26] for magnetostrictive materials a.nd [12, 14, 15] for shape
memory films, the general model (3) enforces minor loop closure and provides a unified characteri-
zation framework for a broad range of ferroic compounds [37, 38]. Furthermore, it is illustrated in
[1, 24, 26, 38, 39] that the framework accommodates certain temperature dependencies, relaxation
mechanisms, and rate dependencies. Finally, it is amenable to inversion and use as a nonlinear
inverse filter for linear control design [25, 35]. Hence it addresses criteria (i)-(v).

The performance of the model is illustrated for PZT, Terfenol-D, and shape memory films in
Figure 1 to demonstrate its unified nature and capacity to guarantee biased minor loop closure in
quasistatic operating regimes. The capability of the framework to characterize thermal and rate
dependencies is illustrated in Figures 2 and 3 whereas properties of the inverse model are illustrated
in Figure 4. Applications and additional compounds which employ this modeling framework are
detailed in [2, 4, 5, 6, 8, 35)]. '
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Figure 3: Use of the polarization model to characterize the frequency-dependent behavior of stacked
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Control Design for Smart Transducers

The control component of the program has focused on the development of adaptive estimation

techniques and optimal and robust control designs which achieve the high speed, high accuracy
tracking criteria dictated by present aeronautic and aerospace applications utilizing smart material
actuators operating in highly nonlinear and hysteretic regimes. To achieve these stringent criteria,
control algorithms are designed to exploit the physics encapsulated in the unified models. This
has led to the investigation of both linear [16]-[22] and nonlinear [41] control designs for PZT,
magnetostrictive and SMA transducers.

To estimate parameters in the models, we have employed both offline least squares techmques
and linear and nonlinear adaptive parameter estimation techniques [20]. The latter technique is
motivated by the fact that smart transducers often exhibit temperature and pressure fluctuations
which lead to temperature and stress-dependent parameters. Adaptive estimation techniques provide
a mechanism for updating models that neglect these effects and fine-tuning models which incorporate
these dependencies. :

The investigation of robust control designs has focused on the use of the unified modehng frame-
work to construct approximate inverse filters to partially compensate for hysteresis and constitutive
nonlinearities in the manner depicted in Figures 4 and 5(a). This produces a disturbance d due
to discretization errors which is significantly less than that due to uncompensated hysteresis in the
absence of such filters. In addition to hysteresis disturbances, we consider both narrowband sensor
noise s and broadband sensor disturbances n as illustrated in Figure 5(b). In the first facet of the

investigation, we investigated the performance of Hy and Hc, designs utilizing approximate inverse
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Figure 5: (a) Inverse model employed as a filter in the hysteretic system. (b) Robust control config-
‘uration including inputs, disturbances and filters.

filters for high speed, high accuracy tracking. An important component of these designs focused on
the construction of filters W,., W, W, Wy, W, and W to weight inputs and outputs.

As a prototype, we considered control design for magnetostrictive transducers which provide high
force, broadband inputs but exhibit significant hysteresis. As a baseline, we considered the objective
“of obtaining a tracking accuracy of 1-2 micron at 3000 rpm. The numerical performance of an Hs
design in the absence of an approximate inverse and utilizing such filters is illustrated in Figure 6.
Details regarding the performance of the resulting Ho and He, are provided in [16, 21, 22] where it is
illustrated that inverse compensation is required to achieve the strict tracking criteria dictated by a
number of present aerospace and aeronautic applications with high performance actuators operating
in highly hysteretic regimes.

To experimentally validate the technique, we considered first the 1mplementat10n of open loop
designs both employing the inverse filters and devoid of filters. As illustrated in Figure 7 and [9], the
incorporation and inversion of hysteresis mechanisms through model-based inverse filters yields open
loop tracking capabilities that are up to tenfold more accurate than uncompensated designs. The
experimental validation of these nonlinear model- based filters in feedback demgns is under present
investigation.
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Figure 6: (a) Reference and simulated trajectory in the absence of an inverse filter (errors of 6-
7 microns), and (b) using the approximate inverse filter depicted in Figure 4 and 5(a) (errors of
1-1.5 microns).
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Figure 7: Tracking performance in open loop experiments utilizing a model-based inverse and in the
absence of a filter.

An additional facet focuses on nonlinear optimal control formulations which directly incorporate
modeled physics through nonlinear state relations [41]. Solution of the resulting two-point boundary
value problems yields open loop controls. Feedback is introduced by considering linear perturbations
about the optimal trajectory. We are numerically testing the approach for high drive regimes and are
designing experiments to test the real-time implementation of this perturbation control technique.
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piezoceramic materials were employed in collaboration with scientists at ICASE and NASA
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mance THUNDER (THin layer UNimorph Driver and sEnsoR) actuators [2, 23, 40]. These
actuators are being investigated for use as synthetic jets for active flow control, high speed
valves for improved engine design, configurable shape modification of airfoils to improve flight
characteristics, and shape modification in space structures such as configurable mirrors. Point
of contact: Joycelyn Harrison, NASA Langley Research Center, Hampton, VA, 757-864-4239.

2. Configurable Mirrors - AFRL, Kirtland AFB: An investigation was initiated with scientists
in the Space Vehicles Directorate at Kirtland AFB to investigate the feasibility of employing
SMA compounds for configuration and vibration attenuation in membrane and articulated
mirrors. Aspects of the investigation relied on models and control techniques developed un-
der the AFOSR program. To initiate this investigation, Robertson and Smith mentored the
project “Design of a Membrane Aperture Deployable Structure” at the Industrial Mathemat-
ics Modeling Workshop held at North Carolina State University on July 22-31, 2002 which
resulted in the paper [7]. Point of contact: Lawrence “Robbie” Robertson, AFRL, Kirtland
AFB, 505-846-7687.




3. Nanopositioning — Asylum Research: The models quantifying constitutive nonlinearities, hys-
teresis, thermal effects, and frequency effects in piezoceramic materials will be employed in
conjunction with model-based control laws to improve the resolution and efficiency of nanopo-
sitioners including high speed scanning for atomic force microscopy. Point of contact: Jason
Cleveland, Asylum Research, Santa Barbara, CA, 805-692-2800.

4. SMA Thin Films and MEMs — Sandia: Shape memory alloy models developed through AFOSR
support are being investigated at Sandia National Laboratories for characterization and control
design in applications employing shape memory films and MEMs. The potential benefit to the
Air Force mission is significant since SMA films and MEMs retain the high strain properties
of bulk SMA but have the potential for operating at significantly higher frequencies. Point of
contact: James Redmond, Sandia National Laboratories, Albuquerque, NM, 505-844-3136.

5. SMA Chevrons and Torque Tubes — Boeing: The 1-D SMA models developed through the
AFOSR program are being extended in collaboration with Boeing scientists to 2-D and 3-D
geometries inherent to chevrons used to reduce jet noise and decrease drag with potential
application to improved inlet channel design. Similar models are being considered by Boeing
as optimization tools for the design of SMA torque tubes to change the camber of rotorcraft
blades. In both cases, models and control designs will be validated using data from Boeing
experiments and flight tests. Point of contact: James Mabe, Boeing Phantom Works, Seattle,
WA, 206-655-0091.

6. PZT Unimorphs — Boeing: Nonlinear structural models developed through AFOSR support are’
being considered at Boeing for characterizing the hysteretic and nonlinear behavior of PZT-
based unimorphs under investigation for flow control and improved flight capabilities. The
second phase of the investigation will focus on model-based control design and implementation
of the unimorphs. This can potentially impact a broad range of flow control problems of interest
to the Air Force and Boeing. Point of contact: James Mabe, Boeing Phantom Works, Seattle,
WA, 206-655-0091.
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